Packing rectangles into a large square

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Packing equal squares into a large square

Let s(x) denote the maximum number of non-overlapping unit squares which can be packed into a large square of side length x. Let W (x) = x − s(x) denote the “wasted” area, i.e., the area not covered by the unit squares. In this note we prove that W (x) = O ( x √ 2)/7 log x ) . This improves earlier results of Erdős-Graham and Montgomery in which the upper bounds of W (x) = O(x) and W (x) = O(x(...

متن کامل

Packing Rectangles into 2OPT Bins Using Rotations

We consider the problem of packing rectangles into bins that are unit squares, where the goal is to minimize the number of bins used. All rectangles can be rotated by 90 degrees and have to be packed nonoverlapping and orthogonal, i.e., axis-parallel. We present an algorithm for this problem with an absolute worst-case ratio of 2, which is optimal provided P 6= NP.

متن کامل

Improved Online Square-into-Square Packing

In this paper, we show an improved bound and new algorithm for the online square-into-square packing problem. This twodimensional packing problem involves packing an online sequence of squares into a unit square container without any two squares overlapping. The goal is to find the largest area α such that any set of squares with total area α can be packed. We show an algorithm that can pack an...

متن کامل

2D-Packing Images on a Large Scale: Packing a Billion Rectangles under 10 Minutes

We present a novel heuristic for 2D-packing of rectangles inside a rectangular area where the aesthetics of the resulting packing is amenable to generating large collages of photographs or images. The heuristic works by maintaining a sorted collection of vertical segments covering the area to be packed. The segments define the leftmost boundaries of rectangular and possibly overlapping areas th...

متن کامل

Absolute approximation ratios for packing rectangles into bins

We consider the problem of packing rectangles into bins that are unit squares, where the goal is to minimize the number of bins used. All rectangles have to be packed non-overlapping and orthogonal, i.e., axis-parallel. We present an algorithm with an absolute worst-case ratio of 2 for the case where the rectangles can be rotated by 90 degrees. This is optimal provided P 6= NP. For the case whe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Periodica Mathematica Hungarica

سال: 2015

ISSN: 0031-5303,1588-2829

DOI: 10.1007/s10998-015-0083-2